Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Neurol ; 270(6): 2817-2825, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2306136

ABSTRACT

BACKGROUND: The SARS-CoV-2 Omicron variant appears to cause milder infections, however, its capacity for immune evasion and high transmissibility despite vaccination remains a concern, particularly in immunosuppressed patients. Herein, we investigate the incidence and risk factors for COVID-19 infection in vaccinated adult patients with Multiple Sclerosis (MS), Aquaporin-4-antibody Neuromyelitis Optica Spectrum Disorder (AQP4-Ab NMOSD), and Myelin Oligodendrocyte Glycoprotein-antibody associated disease (MOGAD) during the Omicron subvariant BA.1/2 wave in Singapore. METHODS: This was a prospective observational study conducted at the National Neuroscience Institute, Singapore. Only patients who had at least two doses of mRNA vaccines were included. Data on demographics, disease characteristics, COVID-19 infections and vaccinations, and immunotherapies were collected. SARS-CoV-2 neutralising antibodies were measured at various time points after vaccination. RESULTS: Two hundred and one patients were included; 47 had COVID-19 infection during the study period. Multivariable logistic regression revealed that receipt of a third SARS-CoV-2 mRNA vaccination (V3) was protective against COVID-19 infection. No particular immunotherapy group increased the risk of infection, however, Cox proportional-hazards regression showed that patients on anti-CD20s and sphingosine-1-phosphate modulators (S1PRMs) had a shorter time to infection after V3, compared to those on other immunotherapies or not on immunotherapy. CONCLUSIONS: The Omicron subvariant BA.1/2 is highly infectious in patients with central nervous system inflammatory diseases; three doses of mRNA vaccination improved protection. However, treatment with anti-CD20s and S1PRMs predisposed patients to earlier infection. Future studies are required to determine the protective efficacy of newer bivalent vaccines that target the Omicron (sub)variant, especially in immunocompromised patients.


Subject(s)
COVID-19 , Multiple Sclerosis , Neuromyelitis Optica , Humans , Singapore/epidemiology , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Viral , Vaccination , Myelin-Oligodendrocyte Glycoprotein
2.
iScience ; 23(12): 101876, 2020 Dec 18.
Article in English | MEDLINE | ID: covidwho-947256

ABSTRACT

Bats are reservoirs for a large number of viruses which have potential to cause major human disease outbreaks, including the current coronavirus disease 2019 (COVID-19) pandemic. Major efforts are underway to understand bat immune response to viruses, whereas much less is known about their immune responses to bacteria. In this study, MR1-restricted T (MR1T) cells were detected through the use of MR1 tetramers in circulation and tissues of Pteropus alecto (Pa) bats. Pa MR1T cells exhibited weak responses to MR1-presented microbial metabolites at resting state. However, following priming with MR1-presented agonist they proliferated, upregulated critical transcription factors and cytolytic proteins, and gained transient expression of Th1/17-related cytokines and antibacterial cytotoxicity. Collectively, these findings show that the Pa bat immune system encompasses an abundant and functionally conserved population of MR1T cells with mucosal-associated invariant T-like characteristics, suggesting that MR1 and MR1T cells also play a significant role in bat immune defense.

SELECTION OF CITATIONS
SEARCH DETAIL